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1 Introduction

The main business of banks and insurance companies is risk. Banks and financial institutions
lend money, running the risk of losing the lended amount, and they borrow “short money” having
less risk but higher expected rates of return. Insurance companies on the other hand earn a risk
premium for guaranteeing indemnifification for a negative outcome of a certain event.

The evaluation of risk is essential for both kinds of business. During the 1990’s there has been
established a measure for risk in finance theory as well as in practice, the Value at Risk, VaR. It was
mainly popularized by J.P. Morgan’s RiskMetrics, a database supplying the essential statistical
data to calculate the VaR of derivatives.

In the context of finance Value at Risk is an estimate, with a given degree of confidence, of how
much one can lose from a portfolio over a given time horizon. The portfolio can be that of a single
trader, or it can be the portfolio of the whole bank. As a downside risk measure, Value at Risk
concentrates on low probability events that occur in the lower tail of a distribution. In establishing
a theoretical construct for VaR, Jorion [10] first defines the critical end of period portfolio value
as the worst possible end-of-period portfolio value with a pre-determined confidence level “1− α”
(e.g., 99%) These worst values should not be encountered more than α percent of the time.

For example, a Value at Risk estimate of 1 million dollars at the 99% level of confidence implies
that portfolio losses should not exceed 1 million dollars more than 1% of the time over the given
holding period [10].

Currently, Value at Risk is being embraced by corporate risk managers as an important tool in
the overall risk management process. Initial interest in VaR, however, stemmed from its potential
applications as a regulatory tool. In the wake of several financial disasters involving the trading
of derivatives products, such as the Barrings Bank collapse (see [10], regulatory agencies such as
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the Securities and Exchange Commission or the BIS, in cooperation with several central banks,
embraced VaR as a transparent measure of downside market risk that could be useful in reporting
risks associated with portfolios of highly market sensitive assets such as derivatives. Since VaR
focuses on downside risk and is usually reported in currency units, it is more intuitive than other
statistical terms. It is commonly used for internal risk management purposes and is further being
touted for use in risk management decision making by non-financial firms [10, 11].

However, an essential part of the balance sum of banks and financial institutions is made by the
classical banking products such as credits and loans. Usually the are contracted over the counter
(OTC) and are not traded on markets.

2 The concept of Value at Risk

The sample space Ω of the expected rates of return (or expected “relative returns”) r on the
investment W in some arbitrary assets is mathematically represented by the set R. We assume
that the expected rates of return r(t) with respect to the time horizon t of the investment is a
random variable determined by the distribution function F : Ω → [0, 1],

F (x) =
∫ x

−∞
p(r) dr, (1)

where p is the corresponding probability density. This means in particular that the expected rate
of return r(t) will achieve a value less than x% (x ∈ R) after time t with probability P

(
r(t) 5 x

)
=

α

A
AU | || {z }
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Figure 1: The Value at Risk VaR

F (x). Let Ω̃ = R be the sample space of currency-valued returns1 R = r(t)W . The expected loss
L(t) with respect to the time horizon t of the investment W then is given as the negative difference
between the return and the mean value, L(t) = µW − R(t) = (µ − r(t))W . It is a quantity in
currency units (cu). Note that any return less than the expected one means an effective loss, even if
it is positive. Positive values of L(t) mean a loss after time t, negative ones a gain. Its distribution
function F̃ : Ω̃ → [0, 1] is simply given by F̃ (L) = 1− F (L/W − µ), or

F̃ (L) = 1−
∫ L

−∞
p(L′/W − µ) dL′, (2)

with the probability density −p(L′/W − µ). The Value at Risk VaR with respect to the time
horizon t of the investment then is defined as the maximal expected loss L(t) not exceeded with
probability (1− α):

P
(
L(t) 5 VaR

)
= 1− α, 0 5 α 5 1. (3)

1In this paper the following convention is valid: r denotes a relative quantity with respect to the invested capital
W of the asset (in %, say), whereas R is the absolute return in currency units (cu).
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α is the default or downfall probability of the Value at Risk. For instance, according to the Basle
Accord [1] it should be be α = 1%, and t = 10 days. The Value at Risk often is also called the
“unexpected loss” of the investment, cf. [12]. We have P (L(t) 5 VaR) = F̃ (VaR), and the Value
at Risk is nothing else than the (1− α)-quantile of the random variable L(t):

VaR = F̃−1(1− α), (4)

cf. [16]. To express it in terms of the expected rate of return r(t), the Value at Risk is the negative
α-quantile of the random variable r(t):

VaR = (µ− F−1(α))W. (5)

Usually there only is interest on a positive Value at Risk. So we define the Value at Risk in the
strict sense, VaR+, by

VaR+ = max(0,VaR). (6)

In general, the Value at Risk is depending on the confidence level α, the investment horizon t, the
investment W , and the probability distribution F . According to the famous “moment problem”
the probability density p, and thus the distribution F , is determined by the moments mk for k =
1, 2, . . . , if and only F is of bounded variation on Ω, see the appendix and [20] §1.4. Thus the
Value at Risk depends on mk, i.e., VaR = f ·W with the function f = fα,t(m1,m2, . . .) given as

f = µ− F−1(α). (7)

As a first approximation we restrict ourselves to the first two moments, m1 and m2. But because
the mean value is exactly the first moment, µ = m1, and the volatility σ is related to the second
moment by σ2 = m2 − µ2, we have approximately

VaR = fα,t(µ, σ) ·W. (8)

This approximation in fact is exact for a Gaussian normally distributed random variable, for then
all other moments vanish. The approximation can be generalized straightforwardly to the case
of an arbitrary distribution, besides the extension to the dependence on more moments, f =
f(µ, σ,m3,m4, . . .): According to the “estimating function approach” [8] one can transform the
given random variable to a nearly standard distributed one.

2.1 The case of n subportfolios

Suppose a portfolio Π consisting of n subportfolios Π1, . . . , Πn (n ∈ N). For each subportfolio
Πi we denote the rate of return by ri, or relative return, on the invested capital Wi with time
horizon t. In the sequel we will often call Wi simply the investment of Πi. The total portfolio value
is denoted by WΠ, where WΠ =

∑n
i=1 Wi. We suppose ri to be a real-valued square-integrable

random variable with a probability distribution Fi : R → [0, 1].
The total volatility σΠ of all subportfolios is given by

σ2
Π =

1
W 2

Π

n∑
i,j=1

ρij σiσj WiWj . (9)

Here ρij are the correlation coefficients, cf. [2, 7, 15]. They form the correlation matrix Ĉ = (ρij)i,j

of ri and rj which has some important properties [2, 3, 7]: (i) it is symmetric, i.e. ρij = ρji for
each i, j = 1, . . . , n, (ii) it is positive semi-definite, (iii) its diagonal entries are 1, ρii = 1, and (iv)
its entries each have an absolute value not greater than 1, |ρij | 5 1. The correlation matrix Ĉ is
related to the covariance matrix C = (cij) simply by the equation

C = σT Ĉσ, (10)
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or cij = ρijσiσj . It is a measure of the linear dependence of ri and rj . It induces a quadratic form
Q: Rn × Rn → [0,∞) for two vectors x, y ∈ Rn by

Q(x, y) = xT C y. (11)

The total invested portfolio capital WΠ is the sum of all individual investments Wi of the subport-
folios Πi: WΠ =

∑n
i=1 Wi. Accordingly, the total expected return of the portfolio Π is given by

R =
∑

i riWi. If vi denotes the (isolated) Value at Risk of subportfolio Πi, we have vi = fiWi,
according to (8). The distribution F of the total portfolio is given implicitly by the consistency
condition ∑

ij fifjWiWj = f2W 2
Π (12)

with f = F−1(α).
Let now the distributions all be Gaussian, i.e. fi = σi. Defining the vector v = (v1, . . . , vn) we

conclude that VaR2 = vT Ĉ v, or

VaR2 =
∑

ij ρij fifjWiWj . (13)

Because VaR(λf , λ′W ) = λλ′VaR(f ,W ), the Value at Risk VaR is a homogeneous function
of degree 1 with respect to either f and W ∈ Rn, if the respectively other one is held fixed.2

Straightforward calculation yields

fi

∂fi/∂σi

∂

∂σi
VaR = Wi

∂

∂Wi
VaR (14)

3 Models to determine the VaR

I give a short survey about most popular the basic methods to determine the Value-at-Risk,
parametric models and simulations.

3.1 Parametric models

In parametric models the changes of the portfolio value obey an assumed parametric probability
distribution. Under certain conditions one receives a closed analytic solution depending on the
probility parameters. The simplest ones are parametric models based on the normal distribution
hypothesis. Here I mention four one of these:

Portfolio-normal VaR. Here the total portfolio return r changes according to a normal distri-
bution, i.e. r ∼ N(µ, σ2). Then the variable transformation r 7→ z = (r − µ)/σ yields F as the
standard normal distribution, F (x) = Φ

(
(x−µ)/σ

)
. Thus for an investment the Value at Risk on

the confidence level (1− α) is given by (5) as

VaR = (zασ − µ)W with zα = − Φ−1(α), (15)

cf. [16]. Because losses are always on one side of the distribution, for risk considerations we only
regard the one-sided confidence level.

Asset-normal VaR. This is a special case of the n-subportfolio case in section 2.1. The portfolio
is assumed to consist of n assets W1, . . . , Wn which have normally distributed relative changes r1,
. . . , rn, i.e. ri ∼ N(µi, σi). Then the portfolio Value-at-Risk is given by (15), with

µΠ =
1

WΠ

n∑
i=1

µiWi, σ2
Π =

1
W 2

Π

n∑
i,j=1

ρij σiσj WiWj . (16)

2A rigorous mathematical introduction can be found, e.g., in [17, §26].
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Both the portfolio-normal and the asset-normal distributions have little practical utility. Despite
the fact that the normal distribution hypothesis is not correct, correlation estimates of a realistic
n-asset portfolio has to face permanent emergence and vanishing of financial instruments, due to
their individually finite maturities or portfolio extension with new positions.

Delta-normal and Delta-Gamma-normal VaR. In practice, the distributions of daily changes
in many market variables have essentially fatter tails than the normal distribution. In the light of
the unappropriateness of asset-normal Values at Risk it appears to be more senseful to consider
m “risk factors” S(t) = (S1(t), . . . , Sn(t)) such as bond prices, interest rates, currency exchange
rates, stock indices etc. The value Wi of each asset in the portfolio i then depends on these risk
factors, Wi(t) = Wi(S(t)), and the corresponding expected return R after period t is given by

R(t) =
n∑

i=1

Wi(t)−Wi(0).

The expected rate of return r is given by r(t) = R(t)/WΠ, with WΠ =
∑n

i=1 Wi(0). For example,
a simple asset portfolio is a linear combination of n stocks S, i.e. W (t) = NS(t) with the n×m-
matrix N with real entries. But if the assets includes options on stocks, the portfolio is not linear
in the stock prices Si.

For i, j = 1, . . . ,m we define the parameters δi and γij by

δi =
∂R

∂Si

∣∣∣∣
t=0

, γij =
∂2R

∂Si∂Sj

∣∣∣∣
t=0

, (17)

Of course, γij = γji. By Taylor expansion we see that

R(t) =
∑

i

δi ∆i(t) +
1
2

∑
i,j

γij ∆i(t)∆j(t) + . . . (18)

where ∆i(t) := Si(t) − Si(0). The determination of the Delta-normal VaR then starts with the
approximation γij = 0 and the assumption that the ∆i’s are independent and commonly normally
distributed, ∆ ∼ N(0, tC). This means that the portfolio value change R as a whole is normally
distributed, but each single position needs not to be. We then get

VaR = zα

√
t ·
√

d · C · d (19)

where d = (δ1S1(0), . . . , δmSm(0)), and zα = Φ−1(α) is the α-quantile of the standard normal
distribution. For details see [9, 13].

For the Delta-Gamma normal distribution the γij ’s do not vanish. In this case the VaR can
only be determined approximately or numerically. A broad introduction to the most commonly
used methods is given in [13].

3.2 Simulation models

An alternative to parametric models are simulation models. The probability distribution of the
relative returns of a portfolio emerges from a fictitious rate of return generated by scenarios.

Historical simulation or bootstrapping. The aim of this method is to generate a future
distribution of possible future scenarios based on historical data. The data usually consist of daily
returns for all possible assets, reaching back over a certain period. The simulation of the daily
return for a day in the future then simply is done by choosing by chance (uniform distribution!)
one of the historical returns.

This method is very simple to implement. Its advantages are that it naturally incorporates any
correlation between assets and any non-normal distribution of asset prices. The main disadvantage
is that it requires a lot of historical data that may correspond to completely different economic
circumstances than those that currently apply.
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Monte Carlo simulation. Monte Carlo simulation is the generation of returns (and often of
asset price paths) by the use of random numbers, drawn from an assumed model distribution, to
build up a distribution of future scenarios.

The VaR is calculated as the appropriate percentile of the probability distribution of r. Suppose,
for example, that we calculate 5 000 different sample values of r. The 1-day 99% VaR is the value
of r for the 50th worst outcome; the 1-day 95% VaR is the value for the 250th worst outcome.

The main advantages of Monte Carlo simulation are: It is the most powerful and theoretically
most flexible method, because it is not restricted to a given risk term distribution; the grade of
exactness can be improved by raising the sample number.

The main drawback is that it tends to be slow because a company’s complete portfolio has to
be revalued many times. One way of speeding things up is to assume that equation (18) describes
the relationship between r and the Si’s. We then avoid the need for a complete revaluation of the
portfolio. This is sometimes referred to as the partial simulation approach.

4 How to calculate VaR

Typically the data required for the calculations of VaR are statistical parameters for the ‘underly-
ings’ and measures of a portfolio’s current exposure to these underlyings. The parameters include
volatilities and correlations of the assets and, for longer time horizons, drift rates. In October 1994
the American bank JP Morgan introduced the system RiskMetrics as a publicly accessible service
for the estimation of VaR parameters for tradable assets such as stocks, bonds, and equities. In
April 1997, JP Morgan also proposed a similar approach, together with a data service, for the
estimation of risks associated with the risk of default of loans, CreditMetrics.

4.1 RiskMetrics

A detailed technical description of the method for estimating financial parameters can be found at
the web site www.jpmorgan.com. Here I shortly describe how volatilities and correlations are estimated
from historical data.

Estimating volatility. The volatility of an asset is measured as the annualized standard devi-
ation of returns. There are many ways of taking this measurement. In RiskMetrics the volatility
σi on day i is measured as the square root of a variance that is an exponantially weighted moving
average (EMWA) of the square of returns,

σ2
i =

1− λ

∆t

i∑
j=−∞

λi−j(Rj − 〈R〉)2, (20)

where ∆t is the timestep (usually one day), Rj is the return on day j, and 〈R〉 is the mean value
over the period from day i to j (it is usually neglected, assuming that the time horizon is sufficiently
small). The parameter 0 < λ 5 1 represents the weighting attached to the past volatility versus the
present return. This difference in weighting is more easily seen if we simply calculate σ2

i − λσ2
i−1

yielding (for 〈R〉 ≈ 0)
σ2

i = λσ2
i−1 + (1− λ)Ri/∆t. (21)

JP Morgan has chosen the parameter λ as either 0.94 for a horizon of one day and 0.97 for a
horizon of one month.

Estimating correlation. Similarily to the estimating of volatility, RiskMetrics uses an expo-
nantially weighted estimate

σ12,i = λσ12,i−1(1− λ)R1,iR2,i/∆t. (22)
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4.2 CreditMetrics

The CreditMetrics methodology is described in great detail at the web site www.jpmorgan.com. The
corresponding dataset consists of four data kinds: transition matrices, yield curves, spread, and
correlations. They depend on a model for change of credit rating: A credit rating or grade is
assigned to firms as an estimate of their creditworthiness. This ususally is done by rating agencies,
the famous of which are Standard & Poor’s and Moodey’s. Standard & Poor’s rate businesses as
one of AAA, AA, A, BBB, BB, B, CCC, or Default. Moody’s use Aaa, Aa, A, Baa, Ba, B, Caa,
Ca, C. The credit rating agencies continually gather data on individual firms and will, depending
on the information, grade or regrade a company according to well-specified criteria. Migration to
a higher rating will increase the value of a bond and decrease its yield, since it is less likely to
default.

Transition matrices. The probability that a given company migrates to another rating class
in one year’s time is given by a transition matrix M = (pij), where (pij) denotes the transition
probability from rating class i to j over a given finite horizon. The matrix is time-dependent,
forming a Markov process as time passes. For instance, a typical S&P transition matrix looks like:

AAA AA A BBB BB B CCC Default
AAA .90829 .08272 .00736 .00065 .00066 .00014 .00006 .00012
AA .00665 .90890 .07692 .00583 .00064 .00066 .00029 .00011
A .00092 .02420 .91305 .05228 .00678 .00227 .00009 .00041
BBB .00042 .00320 .05878 .87459 .04964 .01078 .00110 .00149
BB .00039 .00126 .00644 .07710 .81159 .08397 .00970 .00955
B .00044 .00211 .00361 .00718 .07961 .80767 .04992 .04946
CCC .00127 .00122 .00423 .01195 .02690 .11711 .64479 .19253
Default 0 0 0 0 0 0 0 0

Unless the time horizon is very long, the largest probability is typically for the bond to remain at
its initial rating.

In the CreditMetrics framework, the time horizon is one year.

Yield curves and spreads. The CreditMetrics dataset consists of the risk-free yield to maturity
for several currencies. It contains yields for maturity of 1, 2, 3, 5, 7, 10, and 30 years. Additionally,
for each credit rating the dataset gives the spread above the riskless yield for each maturity. (Thus
the spreads denote the differences between riskless bonds and a rated credit.) Evidently, the riskier

-
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Figure 2: Yield curve and spreads

the credit the higher the yield: Higher yield for risky credits is compensation for the possibility
of not receiving future coupons or the principal. Often one also speaks of the “credit spread
premium.”

7

http://www.jpmorgan.com


Let us examine, as a simple example, a 5-year fixed-rate loan of e 100 million at 6% annual
interest. The market value of the loan is equal to its present value V ,

V =
6

1 + r1 + s1
+

6
(1 + r2 + s2)2

+
6

(1 + r3 + s3)3
+

106
(1 + r4 + s4)4

, (23)

measured in million e. Here ri denotes the risk-free rate (derived from the yield to maturity curve)
expected after year i, and si is the corresponding annual credit spread. If the loan is downgraded,

....................

...............................
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...............................
.......

.....................................................
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| {z }
single

present
values
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1
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2

6
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Figure 3: The cash flow and the single present values resulting from each payment.

the spread si will rise, and thus the present value will fall. A credit rating upgrade has the opposite
effect. Suppose that, during the first year, the borrower gets upgraded from BBB to A. Then V is
given by, say,

V = 6 +
6

1.0372
+

6
1.04322

+
6

1.04933
+

106
1.05324

= e 108.66.

Hence at the end of the first year, if the loan borrower is upgraded from BBB to A, the e 100
million (book value) loan has a market value of e 108.66 million.

Correlations. To examine the behavior of a portfolio of risky bonds we must consider we must
consider whether there is any correlation between rerating or default of one bond to the rerating
or default of another. In other words: Are bonds issued by different companies or governments
correlated? The CreditMetrics dataset gives the correlations between major indices in many coun-
tries.

Each company issuing bonds has the return on its stock decomposed into parts correlated with
these indices and a part which is specific to the company. By relating all bond issuers to these
indices we can determine correlations between the companies in our portfolio.

CreditMetrics is, above all, a way of measuring risk associated with default issues. From the
CreditMetrics methodolgy one can calculate the risk, measured by standard deviation, of the risky
portfolio over the required horizon. Because of the risk of default the distribution of returns is
highly skewed, it is far from being normal. For details see [14, §§4 & 10], [19, §45].

Appendix: Moments and cumulants

Let X be a real random variable and p a probability distribution on the phase space Ω such that
for a given k ∈ N the expected value of |X|k exists:

〈|X|k〉 =
∫

Ω

|x|k p(x) dx < ∞.

Then the k-th moment, or moment of order n, is defined by

mk := 〈xk〉 =
∫

Ω

xkp(x) dx. (24)
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Especially the cases k = 1 and k = 2 are important: The first moment is called mean value, µ :=
m1, and the second moment is related to the variance σ2 := 〈(X − µ)2〉 simply by σ2 = m2 − µ2.
For details see, e.g., [4] §1.2, [5] §3, or [7] §1.

From a theoretical point of view the moments are interesting. In the famous “moment problem”
one asks: Does the knowledge of all moments mn suffice to determine the probability distribution?
The problem is solved by application of the fundamental Hahn-Banach theorem under quite general
assumptions, eg. [20] §1.4. However, the log-normal distribution for instance has the remarkable
property that the knowledge of all its moments is not sufficient to characterize the corresponding
distribution, see [4] §1.3.2.

For important computational purposes it is convenient to introduce the characteristic function
of the probability density p(x), defined as its Fourier transform p̂(z):

p̂(z) :=
∫

R
eixzp(x) dx. (25)

Since p(x) is a probability distribution, we always have p̂(0) = 1. The moments of p(x) are easily
obtained by the corresponding derivatives of p̂(x) at z = 0,

mk = (−i)k dk

dzk
p̂(z)

∣∣∣∣
z=0

. (26)

We define the k-th normalized cumulant ĉk of the probability distribution p(x) as the k-th derivative
of the logarithm of its characteristic function:

ĉk :=
1

(iσ)k

dk

dzk
log p̂(z)

∣∣∣∣
z=0

. (27)

We have simply ĉ2 = 1. One often uses the third and fourth normalized cumulants, called the
skewness ĉ3 and the kurtosis κ = ĉ4:

ĉ3 =
〈

(x− µ)3

σ3

〉
, ĉ4 =

〈
(x− µ)4

σ4

〉
− 3. (28)

The definitions of the cumulants may look a bit arbitrary, but these quantities have remarkable
properties. For instance, they simply add by summing independent random variables. Moreover
for a Gaussian distribution all cumulants of order larger than two are vanishing, ĉk = 0 for k = 3.
Hence the cumulants, in particular the kurtosis κ, are a measure of the distance between the given
probability distribution p(x) and the Gaussian distribution. For details see [4].

References

[1] Basler Ausschuss für Bankenaufsicht: Richtlinien für das Risikomanagement im Derivativgeschäft (1994);
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ÖBA 11/1998

[13] O. Read (1998): Parametrische Modelle zur Ermittlung des Value at Risk. Thesis, Wirtschafts- und Sozial-
wissenschaftliche Fakultät der Universität zu Köln
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